Journal of Organometallic Chemistry, 251 (1983) 209-214 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER ZINN-HALTIGE HETEROCYCLEN

VII *. 2,2,6-TRIMETHYL-1,3-DITHIA-6-AZA-2-STANNOCAN, EIN 8-RING MIT TRANSANNULARER Sn ··· N-WECHSELWIRKUNG

MARTIN DRÄGER *

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, D-6500 Mainz (B.R.D.)

(Eingegangen den 18. Januar 1983)

Summary

The crystal structure of 2,2,6-trimethyl-1,3-dithia-6-aza-2-stannocane has been determined and refined to R = 0.043. The transannular 1,5-distance Sn \cdots N = 256.6(6) pm exceeds the respective single bond by 49 pm. A comparison with analogous eight-membered rings exhibits a clear-cut correlation of such differences with angle deformations in the transition tetrahedron to trigonal-bipyramid. The axial distance Sn-C is 2 pm longer than the equatorial one.

Zusammenfassung

Die Kristallstruktur von 2,2,6-Trimethyl-1,3-dithia-6-aza-2-stannocan wurde bestimmt und bis R = 0.043 verfeinert. Der transannulare Sn ··· N-Abstand ist mit 256.6(6) pm nur um 49 pm länger als der entsprechende Einfachbindungsabstand. Ein Vergleich mit analogen 8-Ringen ermöglicht eine Korrelation dieser Abstandsdifferenzen mit Winkeldeformationen beim Übergang Tetraeder-trigonale Bipyramide. Der axiale Sn-C-Abstand ist um 2 pm gegenüber dem äquatorialen Abstand aufgeweitet.

Einleitung

Kürzlich konnten wir in der Verbindungsklasse 1 Übergänge von tetraedrischer 4zu trigonal-bipyramidaler 5-Koordination in Abhängigkeit von den Substituenten R und R' beschreiben [2].

Diese Übergänge sind äquivalent einer Zunahme der transannularen 1,5-Wechselwirkung zwischen O, bzw. S und Sn. Noch stärkere transannulare Wechselwir-

^{*} Mitteilung VI siehe Lit. [1].

kungen folgern Tzschach und Mitarbeiter aus NMR- [3] und Mössbauer-Untersuchungen [4] an analogen 8-Ringen mit einem N-Atom in 5-Stellung. Zur

quantitativen Einordnung in unsere Reihe 1 wird im folgenden die Struktur der Verbindung 2,2,6-Trimethyl-1,3-dithia-6-aza-2-stannocan (2) beschrieben.

Struktur des 2,2,6-Trimethyl-1,3-dithia-6-aza-2-stannocan (2)

Die Darstellung von 2 erfolgte wie beschrieben [3]. 2 kristallisiert aus Benzol in Form von orthorhombischen Quadern (Raumgruppe $P2_12_12_1$, Nr. 19) mit den Kristalldaten (Mo- K_{a1} -Strahlung λ 70.926 pm): a 882.5(2), b 924.3(2), c 1429.7(3) pm, V 1166 × 10⁶ pm³, Mol.-Masse 298.0 (C₇H₁₇NS₂Sn), Z = 4, d_{rönt} 1.70 g cm⁻³, d_{exp} 1.63 g cm³, μ 25.0 cm⁻¹.

Die Struktur wurde bis R = 0.043 verfeinert, Tabelle 1 enthält die Lage- und Temperaturparameter. Figur 1 zeigt das gefundene Molekül 2. Tabelle 2 fasst die zur Beschreibung des Moleküls relevanten Bindungslängen und Bindungswinkel zusammen.

Konfiguration um das Sn-Atom

Wie aus Fig. 1 ersichtlich, steht das N-Atom über der Dreiecksfläche S(1)– S(2)–C(5) des Polyeders um das Sn-Atom, wodurch dessen ursprünglich tetraedrische Koordination in eine trigonale Bipyramide mit äquatorialen Liganden S(1), S(2), C(5) und axialen Liganden C(6), N übergeht. Es ist dieses ein Beispiel für den in vielen Kristallstrukturen zu verfolgenden invertiven Reaktionsweg der S_N 2-Substitution am Sn-Atom [5]. Quantitativ wird die Annäherung von N an Sn in Tabelle 3 aufgezeigt und mit entsprechenden O- und S-Annäherungen in Verbindungen des Typs 1 verglichen. Die Δ -Werte in Spalte 4 zeigen die Differenz zwischen beobachtetem transannularen 1,5-Abstand $d(Sn \cdots X)$ und Einfachbindung d(Sn-X)(Einfachbindungen Sn-O 202 \pm 5, Sn-S 242 \pm 5, Sn-N 208 \pm 5 pm als Mittelwerte aus einer grossen Anzahl von Kristallstrukturen [6]; diese Mittelwerte sind etwas länger als die nach Schomaker-Stevenson korrigierten Summen der Pauling-Radien 190, 238 und 198 pm [5]).

Spalte 5 der Tabelle 3 zeigt die Differenz zwischen den äquatorial und axial werdenden Winkeln eines Tetraeders beim Übergang in eine trigonale Bipyramide. Diese Differenz beträgt für die Grenzstrukturen 0 und 90° und kann als direktes Mass für den Übergang angesehen werden. Die Variation der Winkeldifferenz von 31 bis 70° läuft völlig parallel der Abstandsdifferenz Δ von 83 bis 34 pm. Es ist dieses ein Beispiel für das von Dunitz kreierte Struktur-Korrelations-Prinzip [7].

TABELLE 1

LAGE- UND TEMPERATURPARAMETER VON 2,2,6-TRIMETHYL-1,3-DITHIA-6-AZA-STANNOCAN MIT STANDARDABWEICHUNGEN

Atom	×	x	2	U _{li}	U_{11}	U_{33}	U_{23}	U ₁₃	U_{12}
Sn	0.21194(4)	0.11656(4)	0.15259(3)	0.0416(2)	0.0427(2)	0.0453(2)	0.0008(1)	- 0.0050(1)	- 0.0024(1)
S(1)	0.1985(2)	0.0857(2)	0.3210(1)	0.065(1)	0.068(1)	0.0461(7)	- 0.0122(8)	0.0065(7)	-0.0016(9)
S(2)	0.4595(2)	0.1124(2)	0.0786(1)	0.0562(9)	0.074(1)	0.0542(8)	- 0.0009(9)	0.0123(7)	- 0.016(1)
z	0.2897(6)	-0.1492(6)	0.1715(4)	0.053(2)	0.041(2)	0.049(2)	0.001(2)	-0.007(2)	0.004(2)
G])	0.2577(13)	-0.0998(11)	0.3409(5)	0.080(4)	0.075(5)	0.047(3)	0.013(3)	-0.001(3)	0.006(4)
C(2)	0.2260(12)	-0.2044(9)	0.2587(6)	0.086(5)	0.055(3)	0.064(4)	0.014(3)	0.017(4)	0.003(4)
(<u>c</u>)	0.4578(10)	-0.1464(12)	0.1757(10)	0.053(4)	0.080(6)	0.121(8)	0.010(6)	0.006(4)	0.023(4)
C(4)	0.5237(11)	-0.0690(12)	0.0874(8)	0.061(4)	0.085(6)	0.106(8)	- 0.009(5)	0.028(5)	0.019(5)
C(5)	0.0171(9)	0.0390(10)	0.0789(7)	0.054(3)	0.064(3)	0.083(5)	0.005(4)	-0.031(3)	- 0.000(3)
C(6)	0.2011(10)	0.3499(10)	0.1513(7)	0.066(4)	0.046(3)	0.102(7)	0.001(3)	- 0.014(5)	0:006(3)
C(7)	0.2288(17)	- 0.2428(9)	0.0950(6)	0.140(9)	0.051(3)	0.062(4)	- 0.010(3)	- 0.020(6)	- 0.003(6)

Fig. 1. Gefundenes Molekül 2,2,6-Trimethyl-1,3-dithia-6-aza-2-stannocan (2).

TABELLE 2

BINDUNGSLÄNGEN (pm) UND BINDUNGSWINKEL (°) IM 2-MOLEKÜL MIT STANDARD-ABWEICHUNGEN

Bindungslängen		Bindungswinkel		
Sn-S(1) Sn-S(2)	242.8(2) 242.8(2)	S(1)-Sn-S(2) S(1)-Sn-N S(1)-Sn-C(5)	118.3(1) 78.2(2) 114.2(3)	
$\mathbf{Sn}\cdots\mathbf{N}$	256.6(6)	S(1)-Sn-C(6) S(2)-Sn-N	97.1(3) 77.9(2)	
Sn-C(5) Sn-C(6)	213.9(9) 215.9(9)	S(2)-Sn-C(5) S(2)-Sn-C(6) N-Sn-C(5)	120.2(3) 92.9(3) 86.9(3)	
S(1)-C(1) S(2)-C(4)	182(1) 178(1)	N-Sn-C(6) C(5)-Sn-C(6)	165.8(3) 107.2(4)	
N-C(2) N-C(3) N-C(7)	146(1) 149(1) 149(1)	Sn-N-C(2) Sn-N-C(3) Sn-N-C(7) C(2)-N-C(3)	108.7(5) 104.8(6) 112.4(5) 110.9(8)	
C(1)-C(2) C(3)-C(4)	155(1) 156(2)	C(2)-N-C(7) C(3)-N-C(7)	106.5(7) 113.5(9)	
		Sn-S(1)-C(1) Sn-S(2)-C(4)	104.6(3) 105.7(4)	
		S(1)-C(1)-C(2) C(1)-C(2)-N N-C(3)-C(4) C(3)-C(4)-S(2)	114.8(6) 111.1(7) 110.3(9) 111.8(8)	

TABELLE 3

transannularer Abstand $a(3n \cdots x)$ - Einfachöndung $a(3n-x)$, $2v_{eq}$, $2v_{ax}$, summer der aquatom bzw. axial werdenden Winkel eines Tetraeders beim Übergang in eine trigonale Bipyramide)					
x	R	R′	Δ (pm)	$\Sigma \vartheta_{eq} - \Sigma \vartheta_{ax}(^{\circ})$	Lit.
Tetraeder				0	
S	Ph	Ph	83	31.0	[2]
0	Ph	Ph	64	35.7	[2]
NMe	Me	Me	49	55.5	
0	Cl	Ph	39	62.7	[1]
0	C1	Cl	34	60.5	[2]
S	Cl	C1	34	70.1	[2]
trigonale Bipyramide				90	

VERGLEICH ZWISCHEN DEN VERBINDUNGEN 1 (X = 0, S) UND 2 (X = NMe) (Δ Differenz transannularer Abstand $d(Sn \cdots X)$ -Einfachbindung d(Sn-X); $\Sigma \vartheta_{eq}$, $\Sigma \vartheta_{ax}$ Summen der äquatorial, bzw. axial werdenden Winkel eines Tetraeders beim Übergang in eine trigonale Bipyramide)

TABELLE4

TORSIONSWINKEL (°) IM 8-RING MIT STANDARDABWEICHUNGEN

Atome	Winkel		
S(2)Sn-S(1)C(1)	- 67.6(4)		
SnS(1)-C(1)C(2)	- 27.8(8)	W/	
S(1)C(1)-C(2)N	+ 53.5(10)	wanne	
C(1)C(2)-NC(3)	+ 66.2(10)		
C(2)N-C(3)C(4)	- 172.7(8)		
NC(3)-C(4)S(2)	+60.1(11)		
C(3)C(4)-S(2)Sn	- 29.2(8)	Sessel	
C(4)S(2)-SnS(1)	+ 69.7(4)		

Der axiale Sn-C-Abstand ist mit 215.9 pm länger als der äquatoriale Abstand mit 213.9 pm. Die gleiche Abstandsdifferenz von etwa 2 pm findet sich in den beiden 1-Verbindungen mit R = R' = Ph (X = O, 214.7 und 212.7 pm [8]; X = S, 215.6 und 213.9 pm [2]). In der Verbindung mit R = Cl und R' = Ph beträgt Sn-C_{eq} 211 pm [1]. Alle diese Sn-C-Abstandsdifferenzen sind nicht sehr signifikant (vgl. [5]), entsprechen in ihrer Abfolge aber doch eindeutig dem *trans*-Effekt von Alcock [9]. Die übrigen Bindungslängen und Bindungswinkel im 2-Molekül sind normal [10], kurze intermolekulare Wechselwirkungen treten nicht auf.

Konformation des 8-Rings

Tabelle 4 enthält die Torsionswinkel im 8-gliedrigen Heterocyclus. Der 8-Ring besitzt Wanne-Sessel-Konformation: Wannen-Teil Sn-S(1)-C(1)-C(2)-N, Sessel-Teil Sn-S(2)-C(4)-C(3)-N. Diese Konformation ist chiral, das in Fig. 1 gezeigte Molekül entspricht der in Lit. [10] als Enantiomer B bezeichneten Form.

Experimenteller Teil

Kristallvermessung von 2,2,6-Trimethyl-1,3-dithia-6-aza-2-stannocan Die Dichte der Kristalle wurde durch Schwebemethode in Thouletscher Lösung bestimmt; zwischen einzelnen Kristallen bestehen starke Dichteschwankungen. Zur Bestimmung der Reflexintensitäten diente ein Quader mit Flächenausbildung {111} und Abmessungen $0.30 \times 0.30 \times 0.15$ mm, der in eine Glaskapillare eingeschmolzen war. Gemessen wurde mit einem Kappa-Diffraktometer CAD4 (Enraf-Nonius, Delft/Holland) im $\omega/2\theta$ -scan mit monochromatisierter Mo-Strahlung (Graphit-Monochromator, λ 71.069 pm). Der Reflexverlauf der Standardreflexe (Messinstabilität des Diffraktometers 0.006) zeigte keinen Intensitätsabfall während der Messung. Nach den üblichen Korrekturen und Absolutierung durch K-Kurve resultierten 1547 unabhängige $|F|^2$ -Werte (alle Reflexe bis sin $\theta/\lambda = 0.65 \times 10^{-2} \text{ pm}^{-1}$); 126 davon hatten eine Intensität von $I < 2\sigma(I)$ und wurden nicht weiter verwendet.

Kristallstrukturbestimmung von 2

Die Lösung der Struktur erfolgte durch eine Patterson-, eine Fourier- und eine Differenz-Fourier-Synthese. Verfeinert (Vollmatrix) wurde in 2 Cyclen mit isotropen und in 6 Cyclen mit anisotropen Temperaturfaktoren (101 Parameter bei 1421 Observablen). Eine anschliessende Differenz-Fourier-Synthese liess nur 11 der vorhandenen 17 H-Atome klar erkennen, auf ihre Einfügung wurde deshalb völlig verzichtet. Im letzten Verfeinerungscyclus waren alle Parameteränderungen $< 0.1\sigma$ mit einer Konvergenz bei R = 0.043 (gewichtetes R = 0.057, Gewichtssetzung gemäss $w = k/(\sigma^2(F) + gF^2)$ mit g = 0.0047). Die Berechnungen erfolgten mit Hilfe des Programmsystems SHELX-76 [11] und lokalen Programmen [12] (Zeichnung Programm PLUTO78 [13]) auf einer HB-66/80-Rechenanlage im Rechenzentrum der Universität Mainz. Tabellen der gemessenen und berechneten Strukturamplituden können angefordert werden.

Dank

Ich danke A. Tzschach, Martin-Luther-Universität, Halle-Wittenberg (DDR) für die Substanz. Die Deutsche Forschungsgemeinschaft (Projekt Dr 109/7-3) und der Fonds der Chemischen Industrie unterstützten die Untersuchung durch Sachbeihilfen.

Literatur

- 1 M. Dräger, Z. Naturforsch. B, 36 (1981) 437.
- 2 M. Dräger und H.-J. Guttmann, J. Organomet. Chem., 212 (1981) 171.
- 3 C. Mügge, K. Jurkschat, A. Tzschach und A. Zschunke, J. Organomet. Chem., 164 (1979) 135.
- 4 L. Korecz, A.A. Saghier, K. Burger, A. Tzschach und K. Jurkschat, Inorg. Chim. Acta, 58 (1982) 243.
- 5 D. Britton und J.D. Dunitz, J. Amer. Chem. Soc., 103 (1981) 2971.
- 6 M. Dräger, Z. Anorg. Allg. Chem., 423 (1976) 53.
- 7 J.D. Dunitz, X-Ray Analysis and the Structure of Organic Molecules, Cornell Univ. Press, Ithaca-London, 1979, S. 363.
- 8 M. Dräger, Chem. Ber., 114 (1981) 2051.
- 9 N.W. Alcock, Advan. Inorg. Chem. Radiochem., 15 (1972) 1.
- 10 M. Dräger, Z. Anorg. Allg. Chem., 428 (1977) 243.
- 11 G. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, 1976.
- 12 M. Dräger und G. Gattow, Acta Chem. Scand., 25 (1971) 761.
- 13 S. Motherwell, PLUTO78, Plotting Program for Cambridge Crystallographic Data, Cambridge, 1978.